Optimal power allocation scheme for plug-in hybrid electric vehicles using swarm intelligence techniques
نویسندگان
چکیده
Green technologies gain popularity to reduce the pollution and give higher penetration of renewable energy source in the transportation. This research induce that the extensive involvement of plug-in hybrid electric vehicles (PHEVs) requires adequate charging allocation strategy using a combination of smart grid systems and smart charging infrastructures. It is also noticed that daytime charging station are necessary for daily usage of PHEVs due to the limited all-electric-range. Most of the researches in the past have been stated that only proper charging control and infrastructure management can assure the larger participation of PHEVs. Therefore, researchers are trying to develop efficient control mechanism for charging infrastructure in order to facilitate upcoming PHEVs penetration in highway. Nevertheless, most of the past researcher already aware with the issue related to intelligent energy management. Yet, these studies could not fill the gap of the problem associated with intelligent energy management and require formulation of mathematical models with extensive use of computational intelligence-based optimization techniques to solve many technical problems. The outcome of this research study provides four optimization techniques that include Hybrid method *Corresponding author: Pandian M. Vasant, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS 32610 Seri Iskandar, Perak, Malaysia E-mails: [email protected], [email protected] Reviewing editor: Kun Chen, Wuhan University of Technology, China Additional information is available at the end of the article
منابع مشابه
Optimal Intelligent Control of Plug-in Fuel Cell Electric Vehicles in Smart Electric Grids
In this paper, Plug-in Fuel Cell Electric Vehicle (PFCEV) is considered with dual power sources including Fuel Cell (FC) and battery Energy Storage. In order to respond to a transient power demand, usually supercapacitor energy storage device is combined with fuel cell to create a hybrid system with high energy density of fuel cell and the high power density of battery. In order to simulate the...
متن کاملModified Harmony Search Algorithm Based Unit Commitment with Plug-in Hybrid Electric Vehicles
Plug-in Hybrid Electric Vehicles (PHEV) technology shows great interest in the recent scientificliteratures. Vehicle-to-grid (V2G) is a interconnection of energy storage of PHEVs and grid. Byimplementation of V2G dependencies of the power system on small expensive conventional units canbe reduced, resulting in reduced operational cost. This paper represents an intelligent unitcommitment (UC) wi...
متن کاملCost and Environmental Pollution Reduction Based on Scheduling of Power Plants and Plug-in Hybrid Electric Vehicles
There has been a global effort to reduce the amount of greenhouse gas emissions. In an electric resource scheduling, emission dispatch and load economic dispatch problems should be considered. Using renewable energy resources (RESs), especially wind and solar, can be effective in cutting back emissions associated with power system. Further, the application of electric vehicles (EV) capable of b...
متن کاملSwarm Intelligence-Based Optimization for PHEV Charging Stations
In this chapter, Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO) technique were applied for intelligent allocation of energy to the Plug-in Hybrid Electric Vehicles (PHEVs). Considering constraints such as energy price, remaining battery capacity, and remaining charging time, they optimized the State-of-Charge (SoC), a key performance indicator in hybrid electric vehi...
متن کاملA new control strategy for energy management in Plug-in Hybrid Electric Vehicles based on Fuzzy Cognitive Maps
In this paper, a new control strategy for energy management in Plug-in Hybrid Electric Vehicles (PHEVs) using Fuzzy Cognitive Map (FCM) is presented. In this strategy, FCM is used as a supervisory control such that the State of Charge (SoC) of the battery is kept in the acceptable range and fuel consumption per kilometer is reduced, in addition to providing the request power. Since this method ...
متن کامل